Print your atomic force microscope.

نویسندگان

  • Ferdinand Kühner
  • Robert A Lugmaier
  • Steffen Mihatsch
  • Hermann E Gaub
چکیده

Progress in scanning probe microscopy profited from a flourishing multitude of new instrument designs, which lead to novel imaging modes and as a consequence to innovative microscopes. Often these designs were hampered by the restrictions, which conventional milling techniques impose. Modern rapid prototyping techniques, where layer by layer is added to the growing piece either by light driven polymerization or by three-dimensional printing techniques, overcome this constraint, allowing highly concave or even embedded and entangled structures. We have employed such a technique to manufacture an atomic force microscopy (AFM) head, and we compared its performance with a copy milled from aluminum. We tested both AFM heads for single molecule force spectroscopy applications and found little to no difference in the signal-to-noise ratio as well as in the thermal drift. The lower E modulus seems to be compensated by higher damping making this material well suited for low noise and low drift applications. Printing an AFM thus offers unparalleled freedom in the design and the rapid production of application-tailored custom instruments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not ...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Size-dependent on vibration and flexural sensitivity of atomic force microscope

In this paper, the free vibration behaviors and flexural sensitivity of atomic force microscope cantilevers with small-scale effects are investigated. To study the small-scale effects on natural frequencies and flexural sensitivity, the consistent couple stress theory is applied. In this theory, the couple stress is assumed skew-symmetric. Unlike the classical beam theory, the new model contain...

متن کامل

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

متن کامل

GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers

V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 78 7  شماره 

صفحات  -

تاریخ انتشار 2007